1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
//! Model of computing resource with a single core.
use serde::Serialize;
use simcore::cast;
use simcore::component::Id;
use simcore::context::SimulationContext;
use simcore::event::Event;
use simcore::handler::EventHandler;
use dslab_models::throughput_sharing::{FairThroughputSharingModel, ThroughputSharingModel};
// STRUCTS -------------------------------------------------------------------------------------------------------------
/// Reason for computation failure.
#[derive(Clone, Debug, Serialize)]
pub enum FailReason {
/// Resource doesn't have enough memory.
NotEnoughResources {
/// Amount of currently available memory.
available_memory: u64,
},
}
#[derive(Serialize, Clone)]
struct RunningComputation {
id: u64,
memory: u64,
requester: Id,
}
impl RunningComputation {
pub fn new(id: u64, memory: u64, requester: Id) -> Self {
Self { id, memory, requester }
}
}
// EVENTS --------------------------------------------------------------------------------------------------------------
/// Request to start a computation.
#[derive(Clone, Serialize)]
pub struct CompRequest {
/// Total computation size.
pub flops: f64,
/// Total memory needed for a computation.
pub memory: u64,
/// Id of simulation component to inform about the computation progress.
pub requester: Id,
}
/// Computation is started successfully.
#[derive(Clone, Serialize)]
pub struct CompStarted {
/// Id of the computation.
pub id: u64,
}
#[derive(Clone, Serialize)]
struct InternalCompFinished {
computation: RunningComputation,
}
/// Computation is finished successfully.
#[derive(Clone, Serialize)]
pub struct CompFinished {
/// Id of the computation.
pub id: u64,
}
/// Computation is failed.
#[derive(Clone, Serialize)]
pub struct CompFailed {
/// Id of the computation.
pub id: u64,
/// Reason for failure.
pub reason: FailReason,
}
// MODEL ---------------------------------------------------------------------------------------------------------------
/// Models computing resource with a single "core" supporting concurrent execution
/// of arbitrary number of tasks.
///
/// The core speed is evenly shared between the currently running tasks.
/// The task completion time is determined by the amount of computations and the core share.
/// Each time a task is completed or a new task is submitted, the core shares and completion
/// times of all running tasks are updated accordingly.
pub struct Compute {
#[allow(dead_code)]
speed: f64,
#[allow(dead_code)]
memory_total: u64,
memory_available: u64,
throughput_model: FairThroughputSharingModel<RunningComputation>,
next_event: u64,
ctx: SimulationContext,
}
impl Compute {
/// Creates a new computing resource.
pub fn new(speed: f64, memory: u64, ctx: SimulationContext) -> Self {
Self {
speed,
memory_total: memory,
memory_available: memory,
throughput_model: FairThroughputSharingModel::with_fixed_throughput(speed),
next_event: 0,
ctx,
}
}
/// Starts computation with given parameters and returns computation id.
pub fn run(&mut self, flops: f64, memory: u64, requester: Id) -> u64 {
let request = CompRequest {
flops,
memory,
requester,
};
self.ctx.emit_self_now(request)
}
}
impl EventHandler for Compute {
fn on(&mut self, event: Event) {
cast!(match event.data {
CompRequest {
flops,
memory,
requester,
} => {
if self.memory_available < memory {
self.ctx.emit_now(
CompFailed {
id: event.id,
reason: FailReason::NotEnoughResources {
available_memory: self.memory_available,
},
},
requester,
);
} else {
self.memory_available -= memory;
self.ctx.cancel_event(self.next_event);
self.throughput_model.insert(
RunningComputation::new(event.id, memory, requester),
flops,
&self.ctx,
);
if let Some((time, computation)) = self.throughput_model.peek() {
self.next_event = self.ctx.emit_self(
InternalCompFinished {
computation: computation.clone(),
},
time - self.ctx.time(),
);
}
}
}
InternalCompFinished { computation } => {
let (_, next_computation) = self.throughput_model.pop().unwrap();
assert!(
computation.id == next_computation.id,
"Got unexpected InternalCompFinished event"
);
self.memory_available += computation.memory;
self.ctx
.emit_now(CompFinished { id: computation.id }, computation.requester);
if let Some((time, computation)) = self.throughput_model.peek() {
self.next_event = self.ctx.emit_self(
InternalCompFinished {
computation: computation.clone(),
},
time - self.ctx.time(),
);
}
}
})
}
}