1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
//! Model of computing resource with multiple cores.
use std::cmp::min;
use std::collections::HashMap;
use serde::Serialize;
use simcore::component::Id;
use simcore::context::SimulationContext;
use simcore::event::Event;
use simcore::handler::EventHandler;
use simcore::{cast, EventId};
// STRUCTS -------------------------------------------------------------------------------------------------------------
/// Resource allocation.
#[derive(Clone, Serialize)]
pub struct Allocation {
/// Number of cores.
pub cores: u32,
/// Amount of memory.
pub memory: u64,
}
impl Allocation {
/// Creates a new allocation.
pub fn new(cores: u32, memory: u64) -> Self {
Self { cores, memory }
}
}
/// Function from `[1, max_cores]` to `[1, +inf]` describing the dependency
/// between the number of cores used for running a task and achieved parallel speedup.
#[derive(Clone, Copy, Debug, Serialize)]
pub enum CoresDependency {
/// Linear dependency: `speedup(cores) = cores`
Linear,
/// Linear dependency with fixed part corresponding to Amdahl's law:
/// `speedup(cores) = 1 / (fixed_part + (1 - fixed_part) / cores)`
LinearWithFixed {
/// Fraction of a computation which can't be parallelized.
fixed_part: f64,
},
/// Custom dependency.
Custom {
#[serde(skip_serializing)]
/// Custom speedup function.
func: fn(u32) -> f64,
},
}
impl CoresDependency {
/// Speedup achieved when using the given number of cores compared to using a single core.
pub fn speedup(&self, cores: u32) -> f64 {
match self {
CoresDependency::Linear => cores as f64,
CoresDependency::LinearWithFixed { fixed_part } => 1. / (fixed_part + (1. - fixed_part) / cores as f64),
CoresDependency::Custom { func } => func(cores),
}
}
}
/// Reason for computation failure.
#[derive(Clone, Debug, Serialize)]
pub enum FailReason {
/// Resource doesn't have enough memory or available cores.
NotEnoughResources {
/// Currently available number of cores.
available_cores: u32,
/// Currently available amount of memory.
available_memory: u64,
/// Requested number of cores.
requested_cores: u32,
/// Requested amount of memory.
requested_memory: u64,
},
}
/// Computation state.
#[derive(Debug, PartialEq)]
pub enum ComputationState {
/// Computation is currently running.
Running,
/// Computation is preempted.
Preempted,
}
#[derive(Debug)]
struct Computation {
req: CompRequest,
start_time: f64,
cores: u32,
state: ComputationState,
flops_done: f64,
comp_finished_event_id: EventId,
}
impl Computation {
fn new(req: CompRequest, start_time: f64, cores: u32, comp_finished_event_id: EventId) -> Self {
Computation {
req,
start_time,
cores,
state: ComputationState::Running,
flops_done: 0.,
comp_finished_event_id,
}
}
}
// EVENTS --------------------------------------------------------------------------------------------------------------
/// Request to start a computation.
#[derive(Clone, Serialize, Debug)]
pub struct CompRequest {
/// Total computation size.
pub flops: f64,
/// Total memory needed for a computation.
pub memory: u64,
/// Minimum number of used cores.
pub min_cores: u32,
/// Maximum number of used cores.
pub max_cores: u32,
/// Defines the dependence of parallel speedup on the number of used cores.
pub cores_dependency: CoresDependency,
/// Id of simulation component to inform about the computation progress.
pub requester: Id,
}
/// Computation is started successfully.
#[derive(Clone, Serialize)]
pub struct CompStarted {
/// Id of the computation.
pub id: u64,
/// Number of cores allocated to the computation.
/// Equals to the minimum between the number of available cores
/// and the maximum number of cores for the computation.
pub cores: u32,
}
/// Computation cancellation request.
#[derive(Clone, Serialize)]
pub struct CancelComp {
/// Id of the computation.
pub id: u64,
}
/// Computation is cancelled successfully.
#[derive(Clone, Serialize)]
pub struct CompCancelled {
/// Id of the computation.
pub id: u64,
/// Fraction of the flops computed.
pub fraction_done: f64,
}
/// Computation preemption request.
#[derive(Clone, Serialize)]
pub struct PreemptComp {
/// Id of the computation.
pub id: u64,
}
/// Computation is preempted successfully.
#[derive(Clone, Serialize)]
pub struct CompPreempted {
/// Id of the computation.
pub id: u64,
/// Fraction of the flops computed.
pub fraction_done: f64,
}
/// Computation resumption request.
#[derive(Clone, Serialize)]
pub struct ResumeComp {
/// Id of the computation.
pub id: u64,
}
/// Computation is successfully resumed.
#[derive(Clone, Serialize)]
pub struct CompResumed {
/// Id of the computation.
pub id: u64,
}
/// Computation is finished successfully.
#[derive(Clone, Serialize)]
pub struct CompFinished {
/// Id of the computation.
pub id: u64,
}
/// Computation is failed.
#[derive(Clone, Serialize)]
pub struct CompFailed {
/// Id of the computation.
pub id: u64,
/// Reason for failure.
pub reason: FailReason,
}
/// Request to allocate resources.
#[derive(Clone, Serialize)]
pub struct AllocationRequest {
/// Allocated resource.
pub allocation: Allocation,
/// Id of simulation component to inform about the allocation result.
pub requester: Id,
}
/// Allocation is successful.
#[derive(Clone, Serialize)]
pub struct AllocationSuccess {
/// Id of the allocation.
pub id: u64,
}
/// Allocation is failed.
#[derive(Clone, Serialize)]
pub struct AllocationFailed {
/// Id of the allocation.
pub id: u64,
/// Reason for failure.
pub reason: FailReason,
}
/// Request to release previously allocated resources.
#[derive(Clone, Serialize)]
pub struct DeallocationRequest {
/// Released resources.
pub allocation: Allocation,
/// Id of simulation component to inform about the deallocation result.
pub requester: Id,
}
/// Deallocation is successful.
#[derive(Clone, Serialize)]
pub struct DeallocationSuccess {
/// Id of the deallocation.
pub id: u64,
}
/// Deallocation is failed.
#[derive(Clone, Serialize)]
pub struct DeallocationFailed {
/// Id of the deallocation.
pub id: u64,
/// Reason for failure.
pub reason: FailReason,
}
// MODEL ---------------------------------------------------------------------------------------------------------------
/// Models computing resource with multiple cores which supports execution of parallel tasks.
///
/// In this model, the computation request can specify the minimum and maximum number of used cores,
/// and provide a function which defines the dependence of parallel speedup on the number of used cores.
/// Each core can only be used by one computation. The cores allocation for each computation is computed
/// upon the request arrival and is not changed afterwards.
/// This model also supports the manual allocation and release of cores and memory.
pub struct Compute {
speed: f64,
cores_total: u32,
cores_available: u32,
memory_total: u64,
memory_available: u64,
computations: HashMap<u64, Computation>,
allocations: HashMap<Id, Allocation>,
ctx: SimulationContext,
}
impl Compute {
/// Creates a new computing resource.
pub fn new(speed: f64, cores: u32, memory: u64, ctx: SimulationContext) -> Self {
Self {
speed,
cores_total: cores,
cores_available: cores,
memory_total: memory,
memory_available: memory,
computations: HashMap::new(),
allocations: HashMap::new(),
ctx,
}
}
/// Returns id of corresponding simulation component.
pub fn id(&self) -> Id {
self.ctx.id()
}
/// Returns the core speed.
pub fn speed(&self) -> f64 {
self.speed
}
/// Returns the total number of cores.
pub fn cores_total(&self) -> u32 {
self.cores_total
}
/// Returns the number of available cores.
pub fn cores_available(&self) -> u32 {
self.cores_available
}
/// Returns the total amount of memory.
pub fn memory_total(&self) -> u64 {
self.memory_total
}
/// Returns the amount of available memory.
pub fn memory_available(&self) -> u64 {
self.memory_available
}
/// Returns the minimum compute time for a workload with given flops, cores and cores dependency.
pub fn min_compute_time(
&self,
flops: f64,
min_cores: u32,
max_cores: u32,
cores_dependency: CoresDependency,
) -> Result<f64, &str> {
let cores = min(max_cores, self.cores_total());
if min_cores > cores {
return Err("Total number of compute cores is less than min cores");
}
Ok(flops / self.speed / cores_dependency.speedup(cores))
}
/// Returns workload fraction done for a given computation.
pub fn fraction_done(&self, comp_id: EventId) -> Result<f64, &str> {
if let Some(computation) = self.computations.get(&comp_id) {
match computation.state {
ComputationState::Running => {
let speedup = computation.req.cores_dependency.speedup(computation.cores);
let flops_computed = (self.ctx.time() - computation.start_time) * self.speed * speedup;
Ok((computation.flops_done + flops_computed) / computation.req.flops)
}
ComputationState::Preempted => Ok(computation.flops_done / computation.req.flops),
}
} else {
Err("Computation does not exist")
}
}
/// Starts computation with given parameters and returns computation id.
pub fn run(
&mut self,
flops: f64,
memory: u64,
min_cores: u32,
max_cores: u32,
cores_dependency: CoresDependency,
requester: Id,
) -> u64 {
let request = CompRequest {
flops,
memory,
min_cores,
max_cores,
cores_dependency,
requester,
};
self.ctx.emit_self_now(request)
}
/// Cancels computation.
pub fn cancel_computation(&mut self, comp_id: u64) {
self.ctx.emit_self_now(CancelComp { id: comp_id });
}
/// Preempts computation which is currently running.
pub fn preempt_computation(&mut self, comp_id: u64) {
self.ctx.emit_self_now(PreemptComp { id: comp_id });
}
/// Resumes computation which has been preempted.
pub fn resume_computation(&mut self, comp_id: u64) {
self.ctx.emit_self_now(ResumeComp { id: comp_id });
}
/// Requests resource allocation with given parameters and returns allocation id.
pub fn allocate(&mut self, cores: u32, memory: u64, requester: Id) -> u64 {
let request = AllocationRequest {
allocation: Allocation::new(cores, memory),
requester,
};
self.ctx.emit_self_now(request)
}
/// Requests resource deallocation with given parameters and returns deallocation id.
pub fn deallocate(&mut self, cores: u32, memory: u64, requester: Id) -> u64 {
let request = DeallocationRequest {
allocation: Allocation::new(cores, memory),
requester,
};
self.ctx.emit_self_now(request)
}
fn stop_computation(&mut self, comp_id: u64, preempt: bool) {
if let Some(computation) = self.computations.get_mut(&comp_id) {
if computation.state == ComputationState::Running {
computation.state = ComputationState::Preempted;
self.ctx.cancel_event(computation.comp_finished_event_id);
self.memory_available += computation.req.memory;
self.cores_available += computation.cores;
let speedup = computation.req.cores_dependency.speedup(computation.cores);
let flops_computed = (self.ctx.time() - computation.start_time) * self.speed * speedup;
computation.flops_done += flops_computed;
} else if preempt {
panic!("Computation is already preempted");
}
if preempt {
self.ctx.emit_now(
CompPreempted {
id: comp_id,
fraction_done: computation.flops_done / computation.req.flops,
},
computation.req.requester,
);
} else {
self.ctx.emit_now(
CompCancelled {
id: comp_id,
fraction_done: computation.flops_done / computation.req.flops,
},
computation.req.requester,
);
self.computations.remove(&comp_id);
}
}
}
}
impl EventHandler for Compute {
fn on(&mut self, event: Event) {
cast!(match event.data {
CompRequest {
flops,
memory,
min_cores,
max_cores,
ref cores_dependency,
requester,
} => {
if self.memory_available < memory || self.cores_available < min_cores {
self.ctx.emit_now(
CompFailed {
id: event.id,
reason: FailReason::NotEnoughResources {
available_cores: self.cores_available,
available_memory: self.memory_available,
requested_cores: min_cores,
requested_memory: memory,
},
},
requester,
);
} else {
let cores = self.cores_available.min(max_cores);
self.memory_available -= memory;
self.cores_available -= cores;
self.ctx.emit_now(CompStarted { id: event.id, cores }, requester);
let speedup = cores_dependency.speedup(cores);
let compute_time = flops / self.speed / speedup;
let comp_finished_event_id = self.ctx.emit_self(CompFinished { id: event.id }, compute_time);
let req = CompRequest {
flops,
memory,
min_cores,
max_cores,
cores_dependency: *cores_dependency,
requester,
};
self.computations.insert(
event.id,
Computation::new(req, self.ctx.time(), cores, comp_finished_event_id),
);
}
}
CancelComp { id } => {
self.stop_computation(id, false);
}
PreemptComp { id } => {
self.stop_computation(id, true);
}
ResumeComp { id } => {
let computation = self
.computations
.get_mut(&id)
.expect("Unexpected ResumeComp event in Compute");
if computation.state != ComputationState::Preempted {
panic!("Computation is already running");
}
if self.memory_available < computation.req.memory || self.cores_available < computation.req.min_cores {
self.ctx.emit_now(
CompFailed {
id,
reason: FailReason::NotEnoughResources {
available_cores: self.cores_available,
available_memory: self.memory_available,
requested_cores: computation.req.min_cores,
requested_memory: computation.req.memory,
},
},
computation.req.requester,
);
} else {
let cores = self.cores_available.min(computation.req.max_cores);
self.memory_available -= computation.req.memory;
self.cores_available -= cores;
self.ctx.emit_now(CompResumed { id }, computation.req.requester);
let speedup = computation.req.cores_dependency.speedup(cores);
let compute_time = (computation.req.flops - computation.flops_done) / self.speed / speedup;
computation.comp_finished_event_id = self.ctx.emit_self(CompFinished { id }, compute_time);
computation.cores = cores;
computation.start_time = self.ctx.time();
computation.state = ComputationState::Running;
}
}
CompFinished { id } => {
let running_computation = self
.computations
.remove(&id)
.expect("Unexpected CompFinished event in Compute");
self.memory_available += running_computation.req.memory;
self.cores_available += running_computation.cores;
self.ctx
.emit(CompFinished { id }, running_computation.req.requester, 0.);
}
AllocationRequest { allocation, requester } => {
if self.memory_available < allocation.memory || self.cores_available < allocation.cores {
self.ctx.emit_now(
AllocationFailed {
id: event.id,
reason: FailReason::NotEnoughResources {
available_cores: self.cores_available,
available_memory: self.memory_available,
requested_cores: allocation.cores,
requested_memory: allocation.memory,
},
},
requester,
);
} else {
let current_allocation = self
.allocations
.entry(requester)
.or_insert_with(|| Allocation::new(0, 0));
current_allocation.cores += allocation.cores;
current_allocation.memory += allocation.memory;
self.cores_available -= allocation.cores;
self.memory_available -= allocation.memory;
self.ctx.emit(AllocationSuccess { id: event.id }, requester, 0.);
}
}
DeallocationRequest { allocation, requester } => {
let current_allocation = self
.allocations
.entry(requester)
.or_insert_with(|| Allocation::new(0, 0));
if current_allocation.cores >= allocation.cores && current_allocation.memory >= allocation.memory {
current_allocation.cores -= allocation.cores;
current_allocation.memory -= allocation.memory;
self.cores_available += allocation.cores;
self.memory_available += allocation.memory;
self.ctx.emit(DeallocationSuccess { id: event.id }, requester, 0.);
} else {
self.ctx.emit_now(
DeallocationFailed {
id: event.id,
reason: FailReason::NotEnoughResources {
available_cores: current_allocation.cores,
available_memory: current_allocation.memory,
requested_cores: allocation.cores,
requested_memory: allocation.memory,
},
},
requester,
);
}
if current_allocation.cores == 0 && current_allocation.memory == 0 {
self.allocations.remove(&requester);
}
}
})
}
}